If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(X^2+6X-5)/(X+3)^2=0
Domain of the equation: (X+3)^2!=0We multiply all the terms by the denominator
X∈R
(X^2+6X-5)=0
We get rid of parentheses
X^2+6X-5=0
a = 1; b = 6; c = -5;
Δ = b2-4ac
Δ = 62-4·1·(-5)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{14}}{2*1}=\frac{-6-2\sqrt{14}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{14}}{2*1}=\frac{-6+2\sqrt{14}}{2} $
| -27x-112=-17x-62 | | -27x-112=-17x-6 | | 12x-44=6x+34 | | 10x-80=5x-50 | | 12x-18=8x+34 | | 34-u=16+12-4 | | (3x+2)^2-11(3x+2)+28=0 | | -3p-4=-13-2p | | 2x+62=6x+6 | | -(x-2)/(x-2)=0 | | 6x-10=2= | | 180=(9x-20)+(6x+10) | | 5x-4=31= | | 2x-1=29= | | -6n+4=22 | | 20x^2=8x | | 1,3/4d=14 | | 13/4d=14 | | 2x=3x/4+5/2 | | 13x-8x+81=0 | | 7x+90=1000 | | 3x^2-26x+47=0 | | -6+z=48-10 | | 30000-160q-40q=0 | | (5x-12)=(7x+12) | | 30000-160x-40x=0 | | *12=2u | | 30,000-160x-40x=0 | | 10(2x-1)=8(2x+1)+22 | | (8x-3)+10=21 | | 7x-9=6(4-3x) | | 18+m-14=132 |